This is a second post in a series on the role of embargoes and the Ingelfinger rule in the production of science news. Click here for the first post.

Photo by sAeroZar/Flickr.com

Although proponents of embargoes argue the convention increases the quality and accuracy of science news, there is sparse evidence to support this conclusion. In fact, opponents to both embargoes and the Ingelfinger rule argue they actually degrade the quality of science news. Some even question the quality and reliability of peer-reviewed research, too (Freedman, 2010).

It’s troublesome to assume that embargoes equate to increased quality. As Fred Molitor notes in his 1993 review of media coverage of a study featured in The New England Journal of Medicine, most of the caveats of a given experiment were excluded from newspaper articles despite journalists having extra time for reporting. In the study, researchers found that a group of male physicians who took aspirin had nearly half the number of heart attacks when compared to a control group. Science journalists covering the study, however, neglected to report that men receiving the treatment also experienced strokes, which is arguably an undesirable — even deadly — side effect. Even with extra time to write about the findings under an embargo, journalists did not include the caveats in their coverage, which may have misled readers into thinking the treatment was “risk-free.”

Press releases can degrade the quality of science news as well. Steven Woloshin and Lisa Schwartz (2002) note that press releases generally fail to address studies’ limitations and rarely disclose industry funding. At a more basic level, the authors argue press officers make decisions based on their own sense of “perceived newsworthiness.” Essentially, press officers do not always choose to write releases based on the quality of the research, but rather by the qualities they believe will appeal to journalists and their editors. Schuchman and Wilkes (1997) also point out the fact that embargoes “increase the perceived ‘newsworthiness’ of a journal article, thereby encouraging an over reliance on journals as a source of scientific news.”

Former Scientific American editor in chief and journalism instructor John Rennie says it’s not difficult to tell which stories are embargoed because they seem “interchangeable.” Although the public might not initially see a problem with this type of pack reporting, he believes regular consumers of science news and people who think more critically about the information presented to them notice the lack of diversity. Along these lines, Rennie says the public should want more diversity and creativity in coverage from journalists. Otherwise, he adds, readers could gain their science news from reading press releases alone rather than from independent outlets.

Also called “churnalism,” lifting significant amounts of information from press releases is already receiving attention in Great Britain, where a website now compares press releases with news stories and calculates the percentage of content copied (and even plagiarized!). Embargoes also affect the intensity of competition among journalists. Experienced writers argue embargoes place them on equal grounds with novices, when their expertise naturally allows them to report with a faster turnaround (Kiernan, 2006).

Screenshot comparing a news story with a press release from the website Churnalism.com

Losing the “newness” of an embargo also influences journalists’ behavior. In one instance, an ABC News reporter broke an embargo out of fear that he would be “scooped” by other organizations (Kassirer & Angell 1994). Overall, embargoes limit competition before publication and intensify it after their passing.

As emphasized by Miriam Schuchman and Michael Wilkes (1997), access to scientists also affects the quality of science news. In efforts to reduce reporting science and health findings out of context, the authors suggest that “researchers who present papers at meetings or publish them in journals should be available to the press to clarify and explain their findings” and that “closed discussion of research may provoke sensationalism that open discussion could prevent.” Clearly, scientists submitting manuscripts to journals that follow the Ingelfinger rule violate Schuchman and Wilkes’ recommendation altogether.

Using the same argument, Rennie says the Ingelfinger rule is not only a means of competition among journals, it is a mechanism of power. “Frankly, a lot of journals that enforce the rule do so in ways that seem capricious at times.” he says. “…People [scientists] err on the side of caution and do not talk to reporters.”

Critics of embargoes and the Ingelfinger rule argue that the peer review process does not necessarily ensure the information published is always correct or reliable. Lawrence Altman (1996) writes that the process should be viewed as a form of “editing” or even a “tool of editing” rather than a final, irrefutable result. Along these lines, the suggestion favors a view of science as a process that often suffers from the same controversies and errors as other institutions. Although peer review provides the best analysis of scientific research at this time, some scientists estimate — controversially — that the majority medical findings are wrong (Freedman, 2010).

Ivan Oransky, executive editor at Reuters Health, says this view of the peer review process is increasingly common. Even more, embargo providers routinely channel “questionable science” that has not undergone the peer review process or misleads journalists through poorly designed methodology, he says. The lack of quality control on certain embargo websites as well as their tendency to allow institutions to embargo material that has already entered the public domain ultimately degrade the quality and credibility of science news.

In the next post, we’ll look at how embargoes can delay readers and viewers from receiving important health information.

Works Cited

Altman, L. (1996). The Ingelfinger rule, embargoes and journal peer review — part 2. The Lancet, 347, 1459-1463. doi: 10.1016/S0140-6736(96)91689-

Freedman, D. (November 2010). Lies, Damned Lies, and Medical Science. The Atlantic, 306(4), 76-84

Kassirer, J., & Angell, M. (1994). Violations of the embargo and a new policy on early publicity. The New England Journal of Medicine, 330(22), 1608-1609. doi:
10.1056/NEJM199406023302211

Kiernan, V. (2006). Embargoed Science. Urbana: University of Illinois Press

Molitor, Fred. (1993). Accuracy in science news reporting by newspapers: the case of aspirin for the prevention of heart attacks. Health Communication, 5(3), 209-224. doi:10.1207/s15327027hc0503_

Oransky, Ivan. Personal communication. April 2011.

Rennie, John. Personal communication. April 2011.

Schuchman, M., & Wilkes, M. (1997). Medical scientists and health news reporting: a case of miscommunication. Annals of Internal Medicine, 126, 976-982.

Woloshin, S., & Schwartz, L. (2002). Press releases: translating research into news. Journal of the American Medical Association, 287(21), 2856-2858. doi: 10.1001/jama.287.21.285

Advertisements